AlemnisAlemnisAlemnis
  • Location
    Schorenstrasse 39,
    3645 Gwatt (Thun), Switzerland
Contact us
  • Products
    • Alemnis Standard Assembly (ASA)
      • ASA: The world’s most versatile indentation system
      • Controllers
      • Software
    • Configurations
      • In-SEM
      • Standalone
      • Automated Large Sample Platform
      • Micro-CT
      • X-ray beamline
    • Strain-Rate Control
    • Environmental control
      • Low Temperature
      • High Temperature
      • Relative Humidity
      • Liquid Cell
      • Bio-Indenter
    • ACCESSORIES
      • Piezo Actuators
      • Load Sensors
      • Scratch Testing Stage
      • Gripper Systems
      • Clamping Systems
      • Optical Microscopes
      • Standard Enclosures
      • Electrical Testing
  • Applications
    • Test Methods
      • Micropillar Compression
      • Ultra High Strain Rate Testing
      • Tensile Testing
      • Nanoindentation
      • Mapping
      • Beam Bending
      • Fatigue Testing
      • Impact Testing
      • Creep
      • Stress Relaxation
      • Scratch Testing
      • Tribology
      • Fracture Toughness
    • Combined Analysis
      • Digital Image Correlation
      • Electron Backscatter Diffraction (EBSD)
      • Synchrotron/X-Ray
      • Tomography
      • Raman Spectroscopy
      • Electrical Testing
      • AFM
    • Domains
      • Materials Science
      • Semiconductor
      • Nuclear
      • Biomechanics
      • Additive Manufacturing
      • MEMS
      • Electrical Testing
      • Coatings
      • Glass
    • Bridging the Gap
    • Application Notes
  • Company
    • About us
    • Mission Statement
    • Managing Team
    • Customer Testimonials
    • General Terms and Conditions
    • Imprint Privacy Policy
    • Careers
  • Resources
    • Contract Testing Services
    • Alemnis Blog
    • News & Events
    • Training Courses
    • Knowledge Base
  • Contact
    • Technical support
    • Contact form
    • Distributors
    • How to find Alemnis
  • Store
  1. Home

ALEMNIS KNOWLEDGE BASE

  • Knowledge Base

Publications

124
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
View all 124 articles

Posts

49
  • 2022
  • 2021
  • 2020
View all 49 articles
  • Publications
    • 2020
      • Huang, J. (2020). 3D Printed Polypyrrole Microneedle Arrays for Electronically Controlled Transdural Drug Release. University of Washington.
      • Chen, M., Wehrs, J., Sologubenko, A. S., Rabier, J., Michler, J., & Wheeler, J. M. (2020). Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars. Materials & Design, 189, 108506.
      • Breumier, S., Sao-Joao, S., Villani, A., Lévesque, M., & Kermouche, G. (2020). High strain rate micro-compression for crystal plasticity constitutive law parameters identification. Materials & Design, 193, 108789.
      • Haußmann, L., Neumeier, S., Kolb, M., Ast, J., Mohanty, G., Michler, J., & Göken, M. (2020). Local Mechanical Properties at the Dendrite Scale of Ni-Based Superalloys Studied by Advanced High Temperature Indentation Creep and Micropillar Compression Tests. In Superalloys 2020 (pp. 273-281). Springer, Cham.
      • Lin, Z., Novelino, L. S., Wei, H., Alderete, N. A., Paulino, G. H., Espinosa, H. D., & Krishnaswamy, S. (2020). Folding at the Microscale: Enabling Multifunctional 3D Origami‐Architected Metamaterials. Small, 16(35), 2002229.
      • Diaz, O. G., Marquardt, K., Harris, S., Gale, L., Vandeperre, L., Saiz, E., & Giuliani, F. (2020). Degradation mechanisms of SiC/BN/SiC after low temperature humidity exposure. Journal of the European Ceramic Society, 40(12), 3863-3874.
      • Alcalá, J., Očenášek, J., Varillas, J., El-Awady, J. A., Wheeler, J. M., & Michler, J. (2020). Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures. Scientific reports, 10(1), 1-14.
      • Zoller, K., Kalácska, S., Ispánovity, P. D., & Schulz, K. (2020). Microstructure evolution of compressed micropillars investigated by in situ HR-EBSD analysis and dislocation density simulations. arXiv preprint arXiv:2011.08587.
    • 2019
      • H. S. Iyera, G. Mohanty, K. Stillera, J. Michler, M. Colliander, Microscale fracture of chromia scales, Materialia Vol. 8 (2019) 100465
      • H.H. Ding, V. Fridrici, G. Guillonneau, S. Sao-Joao, J. Geringer, J. Fontaine, P. Kapsa, Investigation on mechanical properties of tribofilm formed on Ti–6Al–4V surface sliding against a DLC coating by nano-indentation and micro-pillar compression techniques, Wear 432–433 (2019) 202954
      • Bauer, J., Guell Izard, A., Zhang, Y., Baldacchini, T., & Valdevit, L. (2019). Programmable Mechanical Properties of Two‐Photon Polymerized Materials: From Nanowires to Bulk. Advanced Materials Technologies, 4(9), 1900146.
    • 2018
      • G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J-M. Breguet, J. Michler, J. M. Wheeler, Nanomechanical testing at high strain rates: new instrumentation for nanoindentation and microcompression, Materials and Design 148 (2018) 39-48
      • Best JP, Guillonneau G, Grop S, Taylor AA, Frey D, Longchamp Q, et al. High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology 2018; 178-186.
      • Ast, J., et al., Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungsten. Materials Science and Engineering: A, 2018. 710: p. 400-412.
      • Ast, J., et al., The brittle-ductile transition of tungsten single crystals at the micro-scale. Materials & Design, 2018. 152: p. 168-180.
      • Best, J.P., et al., High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology, 2018. 333: p. 178-186.
      • Best, J.P., et al., Ni-nanocluster composites for enchanced impact resistance of multilayered arc-PVD ceramic coatings. Surface and Coatings Technology, 2018.
      • Bhowmik, A., et al., Deformation behaviour of [001] oriented MgO using combined in-situ nano-indentation and micro-Laue diffraction. Acta Materialia, 2018. 145: p. 516-531.
      • Choleridis, A., et al., Experimental study of wear-induced delamination for DLC coated automotive components. Surface and Coatings Technology, 2018. 352: p. 549-560.
      • de Jager, B., et al. On the Microstructure Size Effect in SLS-built 316L Stainless Steel Parts. in Proceedings of the World Congress on Engineering. 2018.
      • Edwards, T.E.J., et al., Longitudinal twinning in a TiAl alloy at high temperature by in situ microcompression. Acta Materialia, 2018. 148: p. 202-215.
      • Fanicchia, F., et al., Residual stress and adhesion of thermal spray coatings: Microscopic view by solidification and crystallisation analysis in the epitaxial CoNiCrAlY single splat. Materials & Design, 2018. 153: p. 36-46.
      • Ferrand, H.L., F. Bouville, and A.R. Studart, Processing of dense bio-inspired ceramics with deliberate microtexture. arXiv preprint arXiv:1807.04378, 2018.
      • Jones, R., et al., Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys. Scientific reports, 2018. 8(1): p. 8698.
      • Knowles, A.J., et al., Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates. Data in brief, 2018. 17: p. 863-869.
      • Lauener, C., et al., Fracture of Silicon: Influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Materials & Design, 2018. 142: p. 340-349.
      • Liao, Z., et al., On the influence of gamma prime upon machining of advanced nickel based superalloy. CIRP Annals, 2018.
      • Major, L., et al., Ex situ and in situ nanoscale wear mechanisms characterization of Zr/ZrxN tribological coatings. Wear, 2018. 404: p. 82-91.
      • Schroer, A., J.M. Wheeler, and R. Schwaiger, Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading. Journal of Materials Research, 2018. 33(3): p. 274-289.
      • Schwiedrzik, J., et al., A new push‐pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue & Fracture of Engineering Materials & Structures, 2018. 41(5): p. 991-1001.
      • Tong, X., et al., Structural evolution in a metallic glass pillar upon compression. Materials Science and Engineering: A, 2018. 721: p. 8-13.
    • 2017
      • Zou, Y., et al., Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability. Nano letters, 2017. 17(3): p. 1569-1574.
      • Xiao, Y., et al., Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scripta Materialia, 2017. 127: p. 191-194.
      • Wehrs, J., et al., Elevated temperature, micro-compression transient plasticity tests on nanocrystalline Palladium-Gold: probing activation parameters at the lower limit of crystallinity. Acta Materialia, 2017. 129: p. 124-137.
      • Viat, A., et al., Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear, 2017. 392: p. 60-68.
      • Sernicola, G., et al., In situ stable crack growth at the micron scale. Nature communications, 2017. 8(1): p. 108.
      • Schwiedrzik J, Taylor A, Casari D, Wolfram U, Zysset P, Michler J. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia 2017;60:302-14
      • Mieszala, M., et al., Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments. Journal of Materials Processing Technology, 2017. 247: p. 92-102.
      • Mieszala, M., et al., Micromechanics of amorphous metal/polymer hybrid structures with 3D cellular architectures: Size effects, buckling behavior, and energy absorption capability. Small, 2017. 13(8): p. 1602514.
      • Mastorakos, I.N., et al., The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites. Journal of Materials Research, 2017. 32(13): p. 2542-2550.
      • Knowles, A.J., et al., A new beta titanium alloy system reinforced with superlattice intermetallic precipitates. Scripta Materialia, 2017. 140: p. 71-75.
      • Keller, L.M., et al., Understanding anisotropic mechanical properties of shales at different length scales: In situ micropillar compression combined with finite element calculations. Journal of Geophysical Research: Solid Earth, 2017. 122(8): p. 5945-5955.
      • Hasegawa, M., et al., Electrodeposition of dilute Ni-W alloy with enhanced thermal stability: Accessing nanotwinned to nanocrystalline microstructures. Materials Today Communications, 2017. 12: p. 63-71.
      • Feilden, E., et al., Micromechanical strength of individual Al2O3 platelets. Scripta Materialia, 2017. 131: p. 55-58.
      • Wehrs J, Deckarm MJ, Wheeler JM, Maeder X, Birringer R, Mischler S, et al. Elevated temperature, micro-compression transient plasticity tests on nanocrystalline Palladium-Gold: Probing activation parameters at the lower limit of crystallinity. Acta Materialia 2017.
      • Ast J, Polyakov M, Mohanty G, Michler J, Maeder X. Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungsten. Ma-terials Science and Engineering: A 2017.
      • Ast J, Mohanty G, Guo Y, Michler J, Maeder X. In situ micromechanical testing of tungsten micro-cantilevers using HR-EBSD for the assessment of deformation evolution. Materials & Design 2017;117:265-6.
      • Best JP, Wehrs J, Maeder X, Zechner J, Wheeler JM, Schär T, et al. Reversible, high temperature softening of plasma-nitrided hot-working steel studied using in situ micro-pillar compression. Materials Science and Engineering: A 2017;680:433-6.
      • Viat A, Guillonneau G, Fouvry S, Kermouche G, Sao Joao S, Wehrs J, et al. Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear 2017;392:60-8.
      • Schwiedrzik J, Ast J, Pethö L, Maeder X, Michler J. A new push‐pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue & Fracture of Engineering Materials & Structures 2017
      • Ast, J., et al., In situ micromechanical testing of tungsten micro-cantilevers using HR-EBSD for the assessment of deformation evolution. Materials & Design, 2017. 117: p. 265-266.
      • Best, J.P., et al., Reversible, high temperature softening of plasma-nitrided hot-working steel studied using in situ micro-pillar compression. Materials Science and Engineering: A, 2017. 680: p. 433-436.
      • Schwiedrzik, J., et al., Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta biomaterialia, 2017. 60: p. 302-314.
    • 2016
      • Zou, Y., et al., Bridging room-temperature and high-temperature plasticity in decagonal Al–Ni–Co quasicrystals by micro-thermomechanical testing. Philosophical Magazine, 2016. 96(32-34): p. 3356-3378.
      • Zhang, Z., et al., Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity. Journal of the Mechanics and Physics of Solids, 2016. 95: p. 393-410.
      • Wheeler, J.M., et al., The effect of size on the strength of FCC metals at elevated temperatures: annealed copper. Philosophical Magazine, 2016. 96(32-34): p. 3379-3395.
      • Tumbajoy-Spinel, D., et al., Assessment of mechanical property gradients after impact-based surface treatment: application to pure α-iron. Materials Science and Engineering: A, 2016. 667: p. 189-198.
      • Mohanty, G., et al., Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research, 2016. 31(8): p. 1085-1095.
      • Kolb, M., et al., Local mechanical properties of the (β0+ ω0) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures. Materials Science and Engineering: A, 2016. 665: p. 135-140.
      • Kermouche, G., et al., Perfectly plastic flow in silica glass. Acta Materialia, 2016. 114: p. 146-153.
      • Jun, T.-S., et al., Local strain rate sensitivity of single α phase within a dual-phase Ti alloy. Acta Materialia, 2016. 107: p. 298-309.
      • Jun, T.-S., et al., Local deformation mechanisms of two-phase Ti alloy. Materials Science and Engineering: A, 2016. 649: p. 39-47.
      • Jaya, B.N., et al., Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano letters, 2016. 16(12): p. 7597-7603.
      • Guo, Y., et al., On the nucleation and growth of {112¯ 2} twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution. Acta Materialia, 2016. 120: p. 292-301.
      • Edwards, T.E.J., et al., Deformation of lamellar TiAl alloys by longitudinal twinning. Scripta Materialia, 2016. 118: p. 46-50.
      • Chen, M., et al., High-Temperature In situ Deformation of GaAs Micro-pillars: Lithography Versus FIB Machining. JOM, 2016. 68(11): p. 2761-2767.
      • Best, J.P., et al., Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine, 2016. 96(32-34): p. 3552-3569.
      • Abad, O.T., et al., Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia, 2016. 103: p. 483-494.
      • Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philosophical Magazine 2016;96:3461-78
      • Mieszala M, Hasegawa M, Guillonneau G, Bauer J, Raghavan R, Frantz C, et al. Microme-chanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2016.
      • Jaya BN, Wheeler JM, Wehrs J, Best JP, Soler R, Michler J, et al. Microscale Fracture Behavior of Single Crystal Silicon Beams at Elevated Temperatures. Nano Letters 2016;16:7597-603.
      • Best JP, Zechner J, Shorubalko I, Oboňa JV, Wehrs J, Morstein M, et al. A comparison of three different notching ions for small-scale fracture toughness measurement. Scripta Materialia 2016;112:71-4.
      • Best JP, Zechner J, Wheeler JM, Schoeppner R, Morstein M, Michler J. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine 2016;96:3552-69.
      • Gamcová J, Mohanty G, Michalik Š, Wehrs J, Bednarčík J, Krywka C, et al. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction. Applied Physics Letters 2016;108:031907.
      • Mieszala, M., et al., Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins. Nanoscale, 2016. 8(35): p. 15999-16004.
      • Wheeler, J.M., et al., The plasticity of indium antimonide: Insights from variable temperature, strain rate jump micro-compression testing. Acta Materialia, 2016. 106: p. 283-289.
      • Abad OT, Wheeler JM, Michler J, Schneider AS, Arzt E. Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia 2016;103:483-94.
      • Guo Y, Schwiedrzik J, Michler J, Maeder X. On the nucleation and growth of <1122> twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution. Acta Materialia 2016;120:292-301.
      • Jun T-S, Zhang Z, Sernicola G, Dunne FP, Britton TB. Local strain rate sensitivity of single α phase within a dual-phase Ti alloy. Acta Materialia 2016;107:298-309.
      • Mohanty G, Wehrs J, Boyce BL, Taylor A, Hasegawa M, Philippe L, et al. Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research 2016; 31:1085-95.
    • 2015
      • Lunt AJ, Mohanty G, Ying S, Dluhoš J, Sui T, Neo TK, et al. A comparative transmission elec-tron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia-porcelain interface in dental prosthesis. Thin Solid Films 2015;596:222-32.
      • Lunt AJ, Mohanty G, Neo TK, Michler J, Korsunsky AM. Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses.  SPIE Micro+ Nano Materials, Devices, and Applications: International Society for Optics and Photonics; 2015. p. 96685S-S-11.
      • Lunt AJ, Mohanty G, Ying S, Dluhoš J, Sui T, Neo TK, et al. A comparative transmission elec-tron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia-porcelain interface in dental prosthesis. Thin Solid Films 2015;596:222-32.
      • Raghavan R, Wheeler J, Esqué-de los Ojos D, Thomas K, Almandoz E, Fuentes G, et al. Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: Stress-assisted diffusion of Cu. Materials Science and Engineering: A 2015;620:375-82.
      • Wheeler J, Armstrong D, Heinz W, Schwaiger R. High temperature nanoindentation: The state of the art and future challenges. Current Opinion in Solid State and Materials Science 2015;19:354-66.
      • Wehrs J, Mohanty G, Guillonneau G, Taylor AA, Maeder X, Frey D, et al. Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques. JOM 2015; 67:1684-93.
      • Mohanty G, Wheeler JM, Raghavan R, Wehrs J, Hasegawa M, Mischler S, et al. Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philosophical Magazine 2015;95:1878-95.
      • Schoeppner, R. L., Wheeler, J. M., Zechner, J., Michler, J., Zbib, H. M., & Bahr, D. F. (2015). Coherent Interfaces Increase Strain-Hardening Behavior in Tri-Component Nano-Scale Metallic Multilayer Thin Films. Materials Research Letters, 3(2), 114–119.
      • Roa, J. J., Wheeler, J. M., Trifonov, T., Fargas, G., Mateo, A., Michler, J., & Jiménez-Piqué, E. (2015). Deformation of polycrystalline TRIP stainless steel micropillars. Materials Science and Engineering A, 647, 51–57.
      • Leal, A. A., Mohanty, G., Reifler, F. A., Michler, J., & Hufenus, R. (2015). Properties and potential applications of melt-spun amorphous filaments. Chemical Fibers International, 66(Yearbook), 20–22.
      • Wheeler, J. M., Niederberger, C., Raghavan, R., Thompson, G., Weaver, M., & Michler, J. (2015). Elevated Temperature, In Situ Micromechanical Characterization of a High Temperature Ternary Shape Memory Alloy. JOM, 67(12), 2908–2913.
      • Raghavan, R., Harzer, T. P., Chawla, V., Djaziri, S., Phillipi, B., Wehrs, J., … Dehm, G. (2015). Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Materialia, 93, 175–186.
      • Raghavan, R., Elias, J., Erni, R., Parlinska, M., Philippe, L., & Michler, J. (2015). Mechanical behavior of intragranular, nano-porous electrodeposited zinc oxide. Thin Solid Films, 578, 174–179.
      • Raghavan, R., Wheeler, J. M., Harzer, T. P., Chawla, V., Djaziri, S., Thomas, K., … Dehm, G. (2015). Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures. Acta Materialia, 100, 73–80.
      • Wheeler, J. M., Raghavan, R., Chawla, V., Zechner, J., Utke, I., & Michler, J. (2015). Failure mechanisms in metal–metal nanolaminates at elevated temperatures: Microcompression of Cu–W multilayers. Scripta Materialia, 98, 28–31.
      • Weekes, H. E., Vorontsov, V. A., Dolbnya, I. P., Plummer, J. D., Giuliani, F., Britton, T. B., & Dye, D. (2015). In situ micropillar deformation of hydrides in Zircaloy-4. Acta Materialia, 92, 81–96.
    • 2014
      • Schwiedrzik J, Raghavan R, Bürki A, LeNader V, Wolfram U, Michler J, et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nature materials 2014;13:740-7
      • Soler R, Wheeler JM, Chang H-J, Segurado J, Michler J, Llorca J, et al. Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Materialia 2014;81:50-7.
      • Wheeler J, Raghavan R, Chawla V, Morstein M, Michler J. Deformation of hard coatings at elevated temperatures. Surface and Coatings Technology 2014;254:382-7.
      • Leal, A. A., Mohanty, G., Reifler, F. A., Michler, J., & Hufenus, R. (2014). Mechanical response of melt-spun amorphous filaments. Science and Technology of Advanced Materials, 15(3), 35016.
      • Huang, H., & Zhao, H. (2014). In situ nanoindentation and scratch testing inside scanning electron microscopes: opportunities and challenges. Science of Advanced Materials, 6(5), 875–889.
      • Battisti, A., Esqué-de los Ojos, D., Ghisleni, R., & Brunner, A. J. (2014). Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Composites Science and Technology, 95, 121–127.
      • Di Gioacchino, F., & Clegg, W. J. (2014). Mapping deformation in small-scale testing. Acta Materialia, 78, 103–113.
      • Zechner, J., Mohanty, G., Frantz, C., Cebeci, H., Philippe, L., & Michler, J. (2014). Mechanical properties and interface toughness of metal filled nanoporous anodic aluminum oxide coatings on aluminum. Surface and Coatings Technology, 260, 246–250.
      • Zbib, H. M., & Bahr, D. F. (2014). Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites. United States.
      • Schoeppner, R. L. (2014). Nanoscale strengthening mechanisms in metallic thin film systems. Washington State University, PhD dissertation.
      • Arnedo, R. A. S. (2014). Size effects in LiF plasticity: new insights into the lattice resistance contribution. Universidad Carlos III de Madrid, PhD dissertation.
    • 2013
      • Liu S, Wheeler J, Howie P, Zeng X, Michler J, Clegg W. Measuring the fracture resistance of hard coatings. Applied Physics Letters 2013;102:171907.
      • Rabier J, Montagne A, Wheeler J, Demenet J, Michler J, Ghisleni R. Silicon micropillars: high stress plasticity. Phys Status Solidi 2013;10:11-5
      • Wheeler J, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Review of Scientific Instruments 2013;84:045103.
      • Wheeler, J. M., Niederberger, C., Tessarek, C., Christiansen, S., & Michler, J. (2013). Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. International Journal of Plasticity, 40, 140–151.
      • Wheeler, J. M., Maier, V., Durst, K., Göken, M., & Michler, J. (2013). Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Materials Science and Engineering: A, 585, 108–113.
      • Gabureac, M. S., Bernau, L., Boero, G., & Utke, I. (2013). Single Superparamagnetic Bead Detection and Direct Tracing of Bead Position Using Novel Nanocomposite Nano-Hall Sensors. IEEE Transactions on Nanotechnology, 12(5), 668–673.
      • Walter, C., Wheeler, J. M., Barnard, J. S., Raghavan, R., Korte-Kerzel, S., Gille, P., … Clegg, W. J. (2013). Anomalous yielding in the complex metallic alloy Al13Co4. Acta Materialia, 61(19), 7189–7196.
      • Maier, V. (2013). Verformungsverhalten von ultrafeinkörnigen Metallen untersucht mittels neu entwickelter Nanoindentierungsmethoden. Friedrich-Alexander-Universität, PhD dissertation.
    • 2012
      • Wheeler J, Raghavan R, Michler J. Temperature invariant flow stress during microcompression of a Zr-based bulk metallic glass. Scripta Materialia 2012;67:125-8.
      • Wheeler J, Brodard P, Michler J. Elevated temperature, in situ indentation with calibrated contact temperatures. Philosophical Magazine 2012;92:3128-41.
      • Thilly, L., Ghisleni, R., Swistak, C., & Michler, J. (2012). In situ deformation of micro-objects as a tool to uncover the micro-mechanisms of the brittle-to-ductile transition in semiconductors: the case of indium antimonide. Philosophical Magazine, 92(25–27), 3315–3325.
    • 2011
      • Wheeler J, Raghavan R, Michler J. In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Materials Science and Engineering: A 2011;528:8750-6.
      • Ghisleni R, Liu J, Raghavan R, Brodard P, Lugstein A, Wasmer K, et al. In situ micro-Raman compression: characterization of plasticity and fracture in GaAs. Philosophical Magazine 2011;91:1286-92.
      • Utke, I., Jenke, M. G., Röling, C., Thiesen, P. H., Iakovlev, V., Sirbu, A., … Kapon, E. (2011). Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry. Nanoscale, 3(7), 2718–2722.
      • Gabureac, M. S., Bernau, L., & Utke, I. (2011). Nanosynthesis of tunable composite materials by room-temperature pulsed focused electron beam induced chemical vapour deposition. Journal of Nanoscience and Nanotechnology, 11(9), 7982–7987.
      • Jenke, M. G., Lerose, D., Niederberger, C., Michler, J., Christiansen, S., & Utke, I. (2011). Toward Local Growth of Individual Nanowires on Three-Dimensional Microstructures by Using a Minimally Invasive Catalyst Templating Method. Nano Letters, 11(10), 4213–4217.
    • 2008
      • Wasmer K, Wermelinger T, Bidiville A, Spolenak R, Michler J. In situ compression tests on micron-sized silicon pillars by Raman microscopy—Stress measurements and deformation analysis. Journal of Materials Research 2008;23:3040-7.
  • Posts
    • 2022
      • Dynamic response of mixed metallic–organic glasses by micropillar compression
      • Bump-shear test of a single semiconductor wire bonding showing delamination from an aluminium pad
      • Progressive load scratch on an aluminium-coated semiconductor bonding pad
      • Crack propagation in additive-manufactured microscale beams by 3-point bending
      • Super-fast Fabrication of micropillar arrays using laser FIB combination for more statistically relevant micropillar compression tests
      • Shear compression of fused silica micropillars at different strain rates
      • Orientation Stage (OST) for seamless rotation between test axis and vertical axis
      • Pillar splitting of ceramics using a diamond wedge indenter
      • High temperature micropillar compression of fused silica up to 600°C with variable strain rates
      • Kinetic friction coefficient and cyclic wear characteristics during thousands of cycles
    • 2021
      • LAUNCH of the new and unique Nanoindenter for Litescope product
      • New paper using Alemnis Standard Assembly (ASA) to activate pyramidal dislocations by pillar compression of Mg-alloys...
      • Tensile strength and yield tests using the Alemnis Standard Assembly (ASA) system.
      • See a BMG micropillar deformed at a strain rate of 520/s !!!
      • The unique combined AFM-nanoindenter Litescope system
      • A fine example of a cyclic tensile fatigue test
      • Nice example of stable crack growth at a sigma 2 twist boundary in a WC-10wt%Co cemented carbide pillar!
      • A quick introduction to tribology
      • Check out this multicycle compression test on a fused silica pillar of diameter 6 µm at -120°C !
      • Showing the difference between strain hardening and stress flow
      • Check out this in-situ multicycle pillar compression test performed at -150°C using the Alemnis AG LTM-CRYO option
      • Stunning timelapse imaging of the manufacture of Focused Ion Beam (FIB) milled micropillars
      • Interesting example of a micropillar compression test on a Ti/TiN multilayer PVD thin film
      • Nice example of micropillar compression on a fused silica pillar produced by femtosecond-laser-assisted etching
      • See this example of microstructure evolution of a pure gold (Au) thin film deposited on a sapphire substrate
      • Tribological scratch "self-healing" effect
      • In-situ pillar splitting
      • Another great example of the power of using Digital Image Correlation (DIC) in combination with micropillar compression.
      • Nice example of a tensile test performed on a carbon fibre of diameter 6.5 µm using the Alemnis Fibre Clamp Kit (WKT).
      • Crush test on an alumina particle of diameter 200 µm
      • Alemnis pioneering highspeed hardness mapping of semiconductor bonding pads
      • New HTME-1000 Module for high temperature EBSD
      • Combined in-situ AFM-nanoindenter Litescope system
      • The new Alemnis AG HTME-1000
      • High temperature tensile creep test at 500°C on alloy dogbone sample
      • Fast micropillar compression mapping on a large array of silicon micropillars
      • Alemnis collaboration with Ecole des Mines de St-Etienne
      • Alemnis Christmas message 2021
    • 2020
      • Mode dependent fracture testing
      • Tensile gripper kit
      • Additive-manufactured microscale springs
      • Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale
      • Novel tensile testing at the microscale with the Alemnis Standard Assembly (ASA)
      • Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography
      • Nanostructural aspects of the wear process of multilayer tribological coatings
      • Nice example of high strain rate (100/s) micropillar compression of single crystal copper!
      • Serrated flow in crystalline metals
      • Ground-breaking work on micropillar compression of bone pillars maintained at 93% RH using Alemnis Bio-Indenter with a Relative Humidity Module (RHM)
Alemnis

Alemnis offers state-of-the-art nanoindentation technology for academia and industry.

Alemnis was founded in 2008 as a spin-off from the Swiss Federal Institute of Material Science & Technology (EMPA) in Thun.

Contact Us

  • Schorenstrasse 39,
    3645 Gwatt (Thun), Switzerland
  • +41 33 533 79 00

Follow us on Linkedin

Enquiry

    First Name (required)

    Last Name (required)

    Your Email (required)

    Organization (required)

    Phone Number

    Message (required)

    Copyright © 2022 Alemnis | All rights reserved